FACT SHEET

as required by LAC 33:1X.3111 for major LPDES facilities, for drast Louisiana Pollutant Discharge Elimination System Permit No. <u>LA0032221</u>; AI <u>8994</u>; <u>PER20080002</u> to discharge to waters of the State of Louisiana as per LAC 33:1X.2311.

The permitting authority for the Louisiana Pollutant Discharge Elimination System (LPDES) is:

Louisiana Department of Environmental Quality

Office of Environmental Services

P. O. Box 4313

Baton Rouge, Louisiana 70821-4313

I. THE APPLICANT IS: United States Department of the Army

South Fort Polk Wastewater Treatment Plant 6661 Warrior Trail, Bldg. 350, Suite 230

Fort Polk, LA 71459-5339

II. PREPARED BY:

Todd Franklin

DATE PREPARED:

November 24, 2008

III. PERMIT ACTION:

reissue LPDES permit <u>LA0032221</u>, AI <u>8994</u>; <u>PER20080002</u>

LPDES application received: June 4, 2008

EPA has not retained enforcement authority.

Previous LPDES permit effective: December 1, 2003 Previous LPDES permit expired: January 31, 2007

IV. FACILITY INFORMATION:

- A. The application is for the discharge of treated sanitary wastewater from a federally owned treatment works serving the South Fort FamilyHousing of the Joint Readiness Training Center and Fort Polk.
- B. The permit application does indicate the receipt of industrial wastewater. The industrial discharger listed is:

Name of Discharger

Flow

U.S. Army*

up to 40,000 GPD

- *Various activities related to an Army Post, including but not limited to water from soldier's training activities including showers, meal preparation, drinking water purification units, water from oil water separators, water from all other activities related to military activities and training operations.
- C. The facility is located on Georgia Avenue in Fort Polk, Vernon Parish.

LA0032221, AI 8994, PER20080002

Page 2

D. The treatment facility consists of three (3) treatment trains, Plant A/B and Plant C. The influent enters either Plant A/B or Plant C. In both plants, wastewater passes through a baraminutor, grit chamber, and grease removal systems. In Plant A/B, wastewater is split between two (2) circular primary clarifiers. In Plant C, wastewater flows into one circular primary clarifier. Effluent from the three (3) clarifiers flow in parallel to three (3) trickling filters and then to three (3) secondary clarifiers. Effluent from the Plants A/B and Plant C secondary clarifiers are combined in an equalization basin where chlorine disinfection occurs.

The wastewater is then pumped from the equalization basin via a three-mile long forced main to a central distribution box (the discharge from the central distribution box will be Outfall 005). From the distribution box, the treated wastewater is diverted to one of the five sets of three facultative ponds. Pond set 1 discharges to overland flow dispersion system Outfall 001. Pond set 2 discharges to overland flow dispersion system Outfall 002. Pond set 3 discharges to overland flow dispersion system Outfall 003. Pond set 4 and 5 discharges to overland flow dispersion system Outfall 004. Under normal conditions, the effluent is discharged into the four baygalls on a rotating basis. The terms baygall is defined as the headwater of a stream surrounded by pine forest where an impervious clay layer causes the groundwater to percolate to the surface, producing a perched water table and stream conditions conducive to the growth of sweetbay, redbay, and gallberry. Effluent is discharged into the baygalls from a pipeline with small discharge ports spaced at 30-inch intervals along the pipeline. The water filters down through a layer of fine sand, then laterally along the surface of an underlying impervious clay layer, and finally emerging at the base of the slope in a series of rivulets. Sample collection for Outfalls 001 - 004 will occur in the primary channel of each baygall immediately downstream from the point where the effluent emerges from the sandy soil.

Sludge is treated in a multi-step aerobic digester process and dried on sand drying beds. Sludge is disposed at an approved landfill.

E. Outfall 001 (northern most outfall – discharge into the northern most baygall from Pond Set 1)

Discharge Location:

Latitude 31° 3' 43.6" North

Longitude 93° 10' 39.3" West

Outfall 002 (southeast of Outfall 001 - discharge into baygall southeast of Outfall 001 form

Pond Set 2)

Discharge Location:

Latitude 31° 3′ 16.9" North

Longitude 93° 10' 26.6" West

Outfall 003 (southeast of Outfall 002 – discharge into baygall southeast of Outfall 002 from Pond Set 3)

Discharge Location:

Latitude 31° 2' 42.2" North

Longitude 93* 9' 54.4" West

Outfall 004 (southwest of Outfall 003 – discharge into baygall southwest of Outfall 003 from Pond Sets 4 and 5)

Discharge Location:

Latitude 31° 2' 22.2" North Longitude 93° 10' 32.9" West

LA0032221; AI 8994; PER20080002

Page 3

Outfall 005 (discharge from the secondary treatment plant, prior to entering the ponds at the Central Distribution box)

Discharge Location:

Latitude 31° 3′ 4.9″ North

Longitude 93° 10' 54.7" West

Description:

treated sanitary wastewater

Design Capacity:

3.8 MGD

Type of Flow Measurement which the facility is currently using:

Totalizing turbine flow meter

V. RECEIVING WATERS:

The discharge is into Drakes Creek in Subsegment 030501 of the Calcasieu River Basin, defined at LAC 33:IX.1123. Table 3 as Whiskey Chitto Creek-from headwaters to southern boundary of Fort Polk Military Reservation. Subsegment 030501 is listed on the 303(d) list of impaired waterbodies.

The critical low flow (7Q10) of Drakes Creek is 0.177 cfs.

The hardness value is 49 mg/l and the fifteenth percentile value for TSS is 11.25 mg/l.

The designated uses and degree of support for Subsegment 030501 of the Calcasieu River Basin are as indicated in the table below L :

Degree of Support of Each Use												
Primary Contact Recreation	Secondary Contact Recreation	Propagation of Fish & Wildlife	Outstanding Natural Resource Water	Drinking Water Supply	Shell fish Propagation	Agriculture						
Not Supported	, Full	Full	N/A	N/A	N/A	N/A						

^{1'} The designated uses and degree of support for Subsegment 030501 of the Calcasieu River Basin are as indicated in LAC 33:IX.1123.C.3, Table (3) and the 2006 Water Quality Management Plan, Water Quality Inventory Integrated Report, Appendix A, respectively.

VI. ENDANGERED SPECIES:

The receiving waterbody, Subsegment 030501 of the Calcasieu River Basin, is not listed in Section II.2 of the Implementation Strategy as requiring consultation with the U. S. Fish and Wildlife Service (FWS). This strategy was submitted with a letter dated October 24, 2007, from Boggs (FWS) to Brown (LDEQ). Therefore, in accordance with the Memorandum of Understanding between the LDEQ and the FWS, no further informal (Section 7, Endangered Species Act) consultation is required. The effluent limitations established in the permit ensure protection of aquatic life and maintenance of the receiving water as aquatic habitat. It was determined that the issuance of the LPDES permit is not likely to have an adverse effect on any endangered or candidate species or the critical habitat.

LA0032221; AI 8994; PER20080002

Page 4

VII. HISTORIC SITES:

The discharge is from an existing facility location, which does not include an expansion beyond the existing perimeter. Therefore, there should be no potential effect to sites or properties on or eligible for listing on the National Register of Historic Places, and in accordance with the 'Memorandum of Understanding for the Protection of Historic Properties in Louisiana Regarding LPDES Permits' no consultation with the Louisiana State Historic Preservation Officer is required.

VIII. PUBLIC NOTICE:

Upon publication of the public notice, a public comment period shall begin on the date of publication and last for at least 30 days thereafter. During this period, any interested persons may submit written comments on the draft permit modification and may request a public hearing to clarify issues involved in the permit decision at this Office's address on the first page of the statement of basis. A request for a public hearing shall be in writing and shall state the nature of the issues proposed to be raised in the hearing.

Public notice published in:

Local newspaper of general circulation

Office of Environmental Services Public Notice Mailing List

For additional information, contact:

Mr. Todd Franklin
Permits Division
Department of Environmental Quality
Office of Environmental Services
P. O. Box 4313
Baton Rouge, Louisiana 70821-4313

IX. PROPOSED PERMIT LIMITS:

IMPAIRMENTS

Subsegment 030501, Whiskey Chitto Creek-from headwaters to southern boundary of Fort Polk Military Reservation, is listed on LDEQ's Final 2006 303(d) List as impaired for fecal coliform. To date no TMDLs have been completed for this waterbody. A reopener clause will be established in the permit to allow for the requirement of more stringent effluent limitations and requirements as imposed by a TMDL.

Fecal Coliform

To protect against the discharge of fecal coliform bacteria at levels which could cause the receiving waterbody to exceed the state water quality criteria for bacteria, effluent limitations for fecal coliform have been established in the permit.

LA0032221; AI 8994; PER20080002

Page 5

PRE-APPLICATION TREATMENT

It is the intent of this Office to protect in-stream conditions during times of critical or low flow. As such, LAC 33:IX.2311.A.1, requires permits for the discharge of pollutants from any point source into waters of the state. Since the baygalls are not included as waters of the state, effluent limitations and monitoring requirements will not be required for discharge to the baygalls. However, every attempt should be made to meet limitations equivalent to secondary treatment as established by LAC 33:IX.5905.A and B and LAC 33:IX.711.D.2 prior to discharge into the baygalls.

PROPOSED PERMIT LIMITS - OUTFALLS 001, 002, 003, 004, and 005

Post Application Effluent Limitations

Overland flow systems provide advanced tertiary treatment to secondary treated wastewater. The wastewater is treated in the saturated top layer of the soil and by bacteria and algae attached to the vegetation. Wastewater is treated as it passes through the soil by filtration, adsorption, ion exchange, precipitation, microbial action, and plant uptake. In addition, microbes attached to the vegetation to extract nutrients. Overland flow systems provide significant reductions in BOD and TSS. Nitrogen is removed through nitrification/denitrification and crop uptake. Phosphorus removal is limited due to the minimum amount of percolation, but is held in the soil and serves to enrich the soil. Some wastewater is lost through evaporation and transpiration. Very little wastewater is passed onto the groundwater, due to the use of underlying impermeable soils. The remaining wastewater is collected at the bottom of the slope and discharged into nearby waters of the state. (*Process Design Manual for Land Treatment of Municipal Wastewater*, USEPA, US Army Corps of Engineers, and US Department of Agriculture, 1977)

TOTAL RESIDUAL CHLORINE

As per LAC 33:IX.2707L.2.a.ii, availability of information which was not available at the time of previous permit issuance and will justify the application of less stringent effluent limitations in the proposed permit constitutes an exception to LAC 33:IX.2707.L.1, which states when a permit is renewed or reissued standards or conditions must be at least as stringent as the final limitations, standards, or conditions in the previous permit. In the previous permit, this treatment facility was required to meet a maximum limitation of less than 0.1mg/l TRC. A review of the DMRs from the monitoring period from July 2006 through June 2008 revealed no effluent data for TRC above 0.1 mg/l. Since the TRC in the effluent has consistently been below 0.1 mg/l, which is considered "No Measurable", the TRC effluent limitation has been removed from the permit.

LA0032221; Al 8994; PER20080002

Page 6

Final Effluent Limits:

Outfall 005 (Central Distribution Box)

Final limits shall become effective on the <u>effective date of the permit</u> and expire on the <u>expiration date</u> of the permit.

1) Fecal Coliform

The discharge from this facility is into a water body which has a designated use of Primary Contact Recreation. According to LAC 33:IX.1113.C.5.a, the fecal coliform standards for this water body are 200/100 ml and 400/100 ml. Therefore, the limits of 200/100 ml (Monthly Average) and 400/100 ml (Daily Maximum) are proposed as Fecal Coliform limits in the permit. These limits are being proposed through Best Professional Judgement in order to ensure that the water body standards are not exceeded, and due to the fact that existing facilities have demonstrated an ability to comply with these limitations using present available technology.

2) Biomonitoring Language

In accordance with EPA's Region 6 Post-Third Round Toxics Strategy, permits issued to treatment works treating domestic wastewater with a flow (design or expected) greater than or equal to 1 MGD shall require biomonitoring at some frequency for the life of the permit or where available data show reasonable potential to cause lethality, the permit shall require a whole effluent toxicity (WET) limit (Permitting Guidance Document for Implementing Louisiana Surface Water Quality Standards, September 27, 2001 VERSION 4).

Whole effluent biomonitoring is the most direct measure of potential toxicity which incorporates the effects of synergism of the effluent components and receiving stream water quality characteristics. Biomonitoring of the effluent is, therefore, required as a condition of this permit to assess potential toxicity. LAC 33:IX.1121.B.3. provides for the use of biomonitoring to monitor the effluent for protection of State waters. The biomonitoring procedures stipulated as a condition of this permit are as follows:

The permittee shall submit the results of any biomonitoring testings performed in accordance with the LPDES Permit No. LA0032221, Biomonitoring Section for the organisms indicated below.

TOXICITY TESTS

FREQUENCY

Chronic static renewal 7-day survival & reproduction test using Ceriodaphnia dubia (Method 1002.0)

once/quarter1

Chronic static renewal 7-day survival & growth test

once/quarter1

using fathead minnow (Pimephales promelas) (Method 1000.0)

This facility will have a three year compliance schedule to meet toxicity testing requirements implemented into the permit renewal. The biomonitoring frequency shall be quarterly for the life of the permit.

Fact Sheet <u>LA0032221</u>; <u>AI 8994</u>; <u>PER20080002</u> Page 7

<u>Dilution Series</u> - The permit requires five (5) dilutions in addition to the control (0% effluent) to be used in the toxicity tests. These additional concentrations shall be 31%, 41%, 55%, 73%, and 97%. The low-flow effluent concentration (critical low-flow dilution) and WET limit is defined as 97% effluent. The critical dilution is calculated in Appendix B-1 of this fact sheet. Results of all dilutions shall be documented in a full report according to the test method publication mentioned in the **Biomonitoring Section** under Whole Effluent Toxicity. This full report shall be submitted to the Office of Environmental Compliance as contained in the Reporting Paragraph located in the **Biomonitoring Section** of the permit.

The permit may be reopened to require effluent limits, additional testing, and/or other appropriate actions to address toxicity if biomonitoring data show actual or potential ambient toxicity to be the result of the permittee's discharge to the receiving stream or water body. Modification or revocation of the permit is subject to the provisions of LAC 33:IX.2903. Accelerated or intensified toxicity testing may be required in accordance with Section 308 of the Clean Water Act.

See attached Biomonitoring recommendation for more information.

Outfalls 001, 002, 003, and 004

Final effluent limitation's shall become effective on the effective date of the permit and expire on the expiration date of the permit.

Effluent Characteristic	Monthly Avg. (lbs./day)	Monthly Avg.	Weekly Avg.	Basis
CBOD₅	317	10 mg/l	15 mg/l	Limits set in accordance with the Statewide Sanitary Effluent Limitations Policy (SSELP) for facilities of this treatment type and size.
TSS	475	15 mg/l	23 mg/l	Since there is no numeric water quality criterion for TSS, and in accordance with the current Water Quality Management Plan, the TSS effluent limitations shall be based on a case-by-case evaluation of the treatment technology being utilized at a facility. Therefore, a Technology Based Limit has been established through Best Professional Judgement for the type of treatment technology utilized at this facility.

LA0032221; AI 8994; PER20080002

Page 8

Effluent Characteristic	Monthly Ayg. (lbs./day)	Monthly Avg.	Weekly Avg.	Basis
NH3-N	127	4 mg/l	8 mg/l	Limits are based on the Anti- backsliding provision, which prohibits the renewal of an existing LPDES permit that contains effluent limits less stringent than those established in the previous permit.

Other Effluent Limitations

1) pH

According to LAC 33:1X.3705.A.1., POTW's must treat to at least secondary levels. Therefore, in accordance with LAC 33:1X.5905.C, the pH shall not be less than 6.0 standard units nor greater than 9.0 standard units at any time.

2) Solids and Foam

There shall be no discharge of floating solids or visible foam in other than trace amounts in accordance with LAC 33:IX.1113.B.7.

PREVIOUS PERMITS:

LPDES Permit No. LA0032221: Effective: December 1, 2003

	Expired: Jar	uary 31, 2007		
Effluent Characteristic	Discharge Limitation	<u>s</u> .	Monitoring Re	quirements
	Monthly Avg.	Weekly Avg.	Measurement	Sample .
;			Frequency	Type
Outfalls 001, 002, 003, a	<u>nd 004</u>			
Flow	Report	Report	Continuous	Recorder
CBOD ₅	317 lb/day / 10 mg/l		2/week	Grab
TSS	475 lb/day / 15 mg/l	23 mg/l	2/week	Grab
NH ₃ -N	127 lb/day / 4 mg/l	8 mg/l	2/week	Grab
TRC	less than 0.1 mg/l at a	iny one time	2/week	Grab
pН	Range (6.0 su - 9.0 s	u)	2/week	Grab
Biomonitoring			•	
Pimephales promelas	Report	Report	1/quarter	24 Hour Comp.
Ceriodaphnia dubia 📙	Report	Report	1/quarter	24 Hour Comp.
Outfall 005 Fecal Coliform				·
Colonies/100 ml	200	400	2/week	Grab

LA0032221; AI 8994; PER20080002

Page 9

XI. ENFORCEMENT AND SURVEILLANCE ACTIONS:

A) Inspections

A review of the files indicates the following most recent inspections performed for this facility.

Date – June 11, 2007 Inspector – LDEQ Findings and/or Violations –

- Areas of concern were found with operation and maintenance. Deflector plates
 missing and algae buildup found in sprinkler system of trickling filter system.
- New generators were installed to run plant during power outages.
- Algae build-up and bubbles were popping up in A Primary Tank.
- Weirs washed daily but not the whole unit.
- Samples collected to test for chlorine at the equalization basin before water is pumped 1.5 miles away to ponds & Baygall system.
- C-train was operating at the time of the inspection.
- Lab Review chain of custody did not reflect biotoxicity sample as a 24 hour composite.
- There were numerous biotoxicity failures and two TSS excursions from June 2006 through April 2007.
- There were several SSOs
- DMRs reflecting CBOD₅, TSS, and NH₃-N at 6 hour composites but were actually grab samples.

Date – February 1, 2008 Inspector –LDEQ Findings and/or Violations –

- Observed Outfalls 001, 002, and 004. Outfall 001 was currently discharging. The
 discharge was clear with no odor or debris.
- C-train was off-line but expected to be back on-line in about two weeks.
- Numerous SSOs noted during May 2007 through January 2008. SSOs not caused by I & I.
- DMR review from May 2007 through December 2007 revealed three fecal coliform excursions and two TSS excursions.
- Flow meter was last calibrated on June 1, 2007.

B) Compliance and/or Administrative Orders

A review of the files indicates the following most recent enforcement action administered against this facility:

LDEQ Issuance:

Consolidated Compliance Order & Notice of Potential Penalty Enforcement Tracking No. WE-CN-05-0178 and WE-CN-05-0178A Date Issued - November 29, 2001, and February 28, 2007 Findings of Fact: Fact Sheet <u>LA0032221</u>; <u>AI 8994</u>; <u>PER20080002</u> Page 10

The Respondent owns and/or operates a wastewater treatment facility known as the United States Army South Fort Polk Wastewater Treatment Plant located at Georgia Avenue Extension, Building 3970 in Fort Polk, Vernon Parish, Louisiana. The Respondent was issued NPDES permit LA0032221 effective July 29, 1991. In accordance with the assumption of the NPDES program by the state of Louisiana, NPDES permit LA0032221 became a LPDES permit. The Respondent submitted a permit renewal application in a timely manner and LPDES permit LA0032221 was administratively continued until it was reissued with an effective date of December 1, 2003. Under the terms and conditions of the permit, the Respondent is authorized to discharge treated sanitary wastewater from its facility into Drake's Creek; thence into Whiskey Chitto Creek; thence into the Calcasieu River, all waters of the state.

- The Respondent was issued Compliance Order MM-C-03-0044 on July 3, 2003. The relevant violations of the Compliance Order were the unauthorized deposition of regulated solid waste onto the ground, operation and maintenance deficiencies, and exceedances of permit effluent limitations. The relevant requirements of the Compliance Order were to: cease the deposition of the regulated solid waste, immediately take any and all steps necessary to come into compliance with the solid waste regulations and LPDES permit LA0032221, and to submit to the Department a complete written report including a detailed description of the circumstances of the cited violations, the actions taken to achieve compliance with this and corrective or remedial actions taken to mitigate any damages resulting from the violations. Compliance Order MM-C-03-0044 is a final action of the Department and not subject to further review. An inspection on June 17, 2003, and a subsequent file review on May 4, 2005, revealed the following violations:
 - A. The Respondent was not properly operating and maintaining the treatment plant. Specifically, one of the two primary digesters was overflowing onto the ground, the troughs for the secondary clarifiers at Plant A & B contained sludge, and the aerator on the final digester was not operational. According to the Respondent, in a response received by the Department on September 23, 2003, a clogged drain in the digester which caused the overflow was corrected on the same day as the inspection, the secondary clarifier troughs were cleaned on September 18, 2003, and the aerator on the final digester was brought back online the week of July 28, 2003.
 - B. The Respondent failed to follow approved test methods. Specifically, the calibration for the thermometer in the refrigerator that stores BOD samples had expired. According to the Respondent, in a response received by the Department on September 23, 2003, all of the thermometers were recalibrated on July 10, 2003, and the laboratory has instituted a calibration program for its thermometers.
- An inspection on June 28, 2004, and a subsequent file review on May 4, 2005, revealed the following violations:
 - A. The Respondent failed to properly operate and maintain

Fact Sheet <u>LA0032221</u>; <u>AI 8994</u>; <u>PER20080002</u> Page 11

- equipment. Specifically, the Outfall 003 flow meter had not been calibrated. According to the Respondent, in a response received by the Department on November 18, 2004, the flow meters were calibrated on July 30, 2004.
- B. The Respondent failed to submit an accurate DMR. Specifically, data was entered incorrectly into a spreadsheet which caused the loading calculation for TSS for the month of May 2004 to be incorrect. A revised DMR was submitted by the Respondent and received on July 12, 2004.
- Inspections by the Department on June 28, 2004, and June 21, 2005, and the subsequent file reviews on May 4, 2005, and May 8, 2006, revealed numerous overflows had occurred as reported by the Respondent. From March 2004 through April 2006 revealed 40 overflows.
- Inspections on June 17, 2003, June 28, 2004, and June 21, 2005, the subsequent file reviews on May 4, 2005, and May 8, 2006, revealed numerous permit excursions, as reported by the Respondent on DMRs. From July 2003 through February 2006, there were 12 TSS excursions, 1 fecal coliform excursion, and 14 biomonitoring failures.

The May 4, 2005, file review revealed the following violations:

- A. The Respondent failed to submit complete DMRs. Specifically, the Respondent failed to report CBOD loadings for Outfalls 001, 002, 003, and 004 for December 2003, and CBOD, TSS, and Ammonia-Nitrogen loadings for Outfall 001, 002, 003, and 004 for January 2004.
- B. The Respondent failed conduct the quarterly Biomonitoring for December 2003 to February 2004 as required by its permit when it was reissued on December 1, 2003.

Order:

To immediately take any and all steps necessary to meet and maintain compliance with the permit limitations and conditions contained in LPDES permit LA0032221.

- To submit properly completed DMRs for the specific monitoring periods listed in the findings of fact.
- In the event the Respondent believes that complete correction of the above cited deficiencies is not physically possible within 30 days, the Respondent shall submit a comprehensive plan for the expeditious elimination and prevention of such noncomplying discharges.
- 4. To submit a written report that includes a detailed description of the circumstances surrounding the cited violations and actions taken or to be taken to achieve compliance with the Compliance Order.

LA0032221; AI 8994; PER20080002

Page 12

C) DMR Review

A review of the discharge monitoring reports for the period beginning July 2006 through June 2008 has revealed the following violations:

Parameter	Outfall	Period of Excursion	Permit Limit	Reported Quantity	
TSS, Monthly Avg.	001	September 2006	15 mg/l	16 mg/l	
Fecal Coliform, Weekly Avg.	005	June 2007	400 cfu/100 ml	4,015 cfu/100 ml	
TSS, Weekly Avge.	003	July 2007	23 mg/l	35 mg/l	
Fecal Coliform, Weekly Avg.	005	September 2007	400 cfu/100 ml	792 cfu/100 ml	
Fecal Coliform, Weekly Avg.	005	November 2007	400 cfu/100 ml	>1,836 cfu/100 ml	
TSS, Monthly Avg.	001	December 2007	15 mg/l	21 mg/l	
TSS, Weekly Avg.	001	December 2007	23 mg/l	36 mg/l	
TSS, Monthly Avg.	001	January 2008	15 mg/l	25 mg/l	
TSS, Weekly Avg.	001	January 2008	23 mg/l	46 mg/l	
TSS, Weekly Avg.	002	June 2008	23 mg/l	24 mg/l	

XII. <u>ADDITIONAL INFORMATION:</u>

LDEQ reserves the right to impose more stringent discharge limitations and/or additional restrictions in the future. Additional limitations and/or restrictions are based upon water quality studies and can indicate the need for advanced wastewater treatment. Water quality studies of similar dischargers and receiving water bodies have resulted in monthly average effluent limitations of 5mg/L CBOD₅ and 2 mg/L NH₃-N. Prior to upgrading or expanding this facility, the permittee should contact LDEQ to determine the status of the work being done to establish future effluent limitations and additional permit conditions.

Final effluent loadings (i.e. lbs/day) have been established based upon the permit limit concentrations and the design capacity of 3.8 MGD.

Effluent loadings are calculated using the following example:

CBOD₅: 8.34 gal/lb x 3.8 MGD x 10 mg/l = 317 lbs/day

At present, the Monitoring Requirements, Sample Types, and Frequency of Sampling as shown in the permit are standard for facilities of flows between 1 MGD and 5 MGD.

Effluent Characteristics	Monitoring Rec	<u>uirements</u>
	<u>Measurement</u>	Sample -
1	Frequency	Туре
Outfalls 001, 002, 003, and 004		
Flow	Continuous	Recorder
CBOD ₅	2/week	6 Hr. Composite
Total Suspended Solids	2/week	6 Hr. Composite
Ammonia-Nitrogen	2/week	6 Hr. Composite
pH · !	2/week	Grab
Outfall 005		
Fecal Coliform Bacteria	2/week	Grab

LA0032221; AI 8994; PER20080002

Page 13

Biomonitoring

Ceriodaphnia dubia (Method 1002.0) Pimephales promelas (Method 1000.0)

1/quarter 1/quarter 24 Hr. Composite 24 Hr. Composite

Compliance Schedule

In order to allow the permittee time to attain compliance with the WET limitation, INTERIM LIMITS are proposed for this facility.

The permittee shall achieve compliance with the FINAL EFFLUENT LIMITATIONS and MONITORING REQUIREMENTS for Outfall 005 as specified in accordance with the following schedule:

ACTIVITY	DATE					
Achieve Interim Effluent Limitations and Monitoring Requirements	On the effective date of the permit					
Achieve Final Effluent Limitations and Monitoring Requirements	Three years from the effective date of the permit					

The above listed activities must be achieved on or before the deadline date. Additionally, the permittee shall submit a progress report outlining the status of all facility improvements on a yearly basis until compliance is achieved.

The Permittee shall achieve sustained compliance with Final Effluent Limitations.

No later than 14 days following a date for a specific action (as opposed to a report of progress), the permittee shall submit a written notice of compliance or noncompliance.

Pretreatment Requirements

Based upon consultation with LDEQ pretreatment personnel, general pretreatment language will be used due to the lack of either an approved or required pretreatment program.

Pollution Prevention Requirements

The permittee shall institute or continue programs directed towards pollution prevention. The permittee shall institute or continue programs to improve the operating efficiency and extend the useful life of the facility. The permittee will complete an annual Environmental Audit Report <u>each year</u> for the life of this permit according to the schedule below. The permittee will accomplish this requirement by completing an Environmental Audit Form which has been attached to the permit. All other requirements of the Municipal Wastewater Pollution Prevention Program are contained in Part II of the permit.

LA0032221; AI 8994; PER20080002

Page 14

The audit evaluation period is as follows:

Audit Period Begins	Audit Period (4.	Audit Report Completion
Effective Date of Permit	12 Months from Audit Period Beginning Date	3 Months from Audit Period Ending Date

Stormwater Discharges

Because the design flow of the facility is equal to or greater than 1.0 MGD and in accordance with LAC 33:IX.2511.B.14.i, the facility may contain storm water discharges associated with industrial activity. Therefore, in accordance with LAC 33:IX.2511.A.1.b, specific requirements addressing stormwater discharges will be included in the discharge permit.

Acceptance of Hauled Domestic Septage

The permit application indicated that hauled domestic septage was being accepted at the facility. Therefore, specific requirements pertaining to the acceptance of hauled domestic septage has been included in the discharge permit.

XIII <u>TENTATIVE DETERMINATION:</u>

On the basis of preliminary staff review, the Department of Environmental Quality has made a tentative determination to reissue a permit for the discharge described in this Statement of Basis.

XIV REFERENCES:

Louisiana Water Quality Management Plan / Continuing Planning Process, Vol. 8, "Wasteload Allocations / Total Maximum Daily Loads and Effluent Limitations Policy," Louisiana Department of Environmental Quality, 2007.

Louisiana Water Quality Management Plan / Continuing Planning Process, Vol. 5, "Water Quality Inventory Section 305(b) Report," Louisiana Department of Environmental Quality, 2006.

<u>Louisiana Administrative Code, Title 33 - Environmental Quality, Part IX - Water Quality Regulations, Chapter 11 - "Louisiana Surface Water Quality Standards", Louisiana Department of Environmental Quality, 2008.</u>

<u>Louisiana Administrative Code, Title 33 - Environmental Quality, Part IX - Water Quality Regulations, Subpart 2 - "The LPDES Program"</u>, Louisiana Department of Environmental Quality, 2008.

<u>Low-Flow Characteristics of Louisiana Streams</u>, Water Resources Technical Report No. 22, United States Department of the Interior, Geological Survey, 1980.

Fact Sheet <u>LA0032221</u>; <u>A1 8994</u>; <u>PER20080002</u> Page 15

Index to Surface Water Data in Louisiana, Water Resources Basic Records Report No. 17, United States Department of the Interior, Geological Survey, 1989.

LPDES Permit Application to Discharge Wastewater, United States Department of the Army, South Fort Polk Wastewater Treatment Plant, June 4, 2008.

STREAM FLOW CHARACTERISTICS REPORT

MEMORANDUM

TO:

Todd Franklin

DATE:

August 11, 2008

RE:

Stream Flow and Water Quality Characteristics for Drake's Creek, receiving water for the United States Department of the Army / South Fort Polk Wastewater Treatment Plant (Permit No. LA0032221, AI: 8994)

Determinations of water quality characteristics for Outfalls 001-005 were taken from random monitoring station #2443 at Drake's Creek, 4.0 miles northeast of Fort Polk, Louisiana, at the bridge on Mill Creek Road, 1.0 mile east of LA Highway 184. The following hardness and TSS data was determined based on two separate samples:

Average hardness = 49 mg/l 15th percentile TSS = 11.25 mg/l

Based on a memorandum from Max Forbes to Gwen Berthelot, dated September 7, 2002, flow measurements were taken during the estimated 7Q10 range. The measured flow was 0.177 cfs.

APPENDIX B-1

Water Quality Screen

waemada w.b.4	1	Date	1164		· · · · · ·	. D. I	 	$\overline{}$	1	т	 -	
wqsmodn.wk4 Developer: Bruce Field	<u> </u>	Date;	11/24		Appendi	(B-1	- 	 	1	 	Page	1
Software: Lotus 4.0		Time:	07:58 AM					-	 	<u> </u>		
Revision date: 02/14/0				·	LA00322	21; Al 8994	-	 	 	 		
Revision date: 02/14/0	7	Water Out	lie. C	<u>. </u>	unio m			<u>-</u> L			<u> </u>	
	 		dity Screen	for	US Dept.	of the Army	/ South Fort	Polk	-	ļ		
Input variables: Receiving Water Cham		•		Dilution:						<u> </u>	ļ	<u></u>
RECEIVING WATER CHAIR	·				+		 		ilution Serie			
Pacaissina Water Name		D-les C-		ZID Fs =		O.	 	·	ring dilution:	 	0.970776	
Receiving Water Name Critical flow (Qr) cfs=	-	Drakes Cree 0.177	:к		<u></u>	- 	. 	Dilution Se	ries Factor:	 	0.75	
Harm. mean/avg tidal		0.177		MZ Fs =	1		-	 	-	ļ. —		
				Critical Qr (. 0.11439.			ļ		Percent Eff	uent
Drinking Water=1 HH	NPCK=2			Harm. Mear				Dilution N		ļ <u>. </u>	97.078%	
Marine, 1=y, 0=n				ZID Dilutio		0.99699		Dilution N		 	72.8082%	
Rec. Water Hardness=	 - -	49		MZ Dilution		0.97077		Dilution N		 	54.6061%	
Rec. Water TSS=	0	11.25		HHnc Diluti		0.97077	· 	Dilution N		 	40.9546%	
Fisch/Specific=1,Strea				HHc Dilutio		0.97077	 	Dilution N	o, 5	 	30.7160%	
Diffuser Ratio=	+			ZID Upstres		0.0030				<u> </u>		
rm .ci ::	<u> </u>			MZ Upstrea		0.03010	-	on Coefficie	nts; Dissolve	d>Total		
Effluent Characteristic	5:	<u> </u>		м2իկու Up		0.030104	 		<u> </u>			
Permittee=	 -			South Fort P	olk [-		METALS		FW		
Permit Number=		LA0032221		<u></u>	<u> </u>		 	Total Arser	nic	1,922683		
Facility flow (Qef),MC	D=	3.8		MZhhc Ups		0.030104	1	Total Cadn	<u>nium</u>	3.920184		
				ZID Hardne			 	Chromium	II)	4,980338		
Outfall Number =	-	001		MZ Hardnes	<u>= </u>		<u> </u>	Chromium	VI	1		
Eff. data, 2=lbs/day				ZID TSS=			<u> </u>	Total Copp	er	2.95134		
MQL, 2=lbs/day	-			MZ TSS=		-	<u> </u>	Total Lead		5.543479		
Effluent Hardness=		N/A		Multipliers:			<u> </u>	Total Merc	шту	3.066506		
Effluent TSS=	. <u></u>	N/A		WLAa -> 1.	TAa	0.33	:	Total Nicke	:1	2,387368		
WQBL ind, 0=y, 1=n	<u> </u>			WLAc> 1.	_	0,53		Total Zinc		3.583781		
Acute/Chr. ratio 0=n, 1	-			LTA ac->V	VQBL av	3 1.31	ļ	<u> </u>	<u> </u>			
Aquatic, acute only 1=y,	0=n			LTA a,c->V	VQBL me	x 3.11	ļ	Aquatic Lif	e, Dissolved			
	l			LTA h -> V	/QBL ma	x 2.38		Metal Crite	ria, ug/L			
Page Numbering/Label	ing	1		WQBL_limi	/report	2.13		METALS	ļ	ACUTE	CHRONIC	
Appendix		Appendix B	-1	WLA Fraction	n	<u>.</u>		Arsenic	L	339.8	150	
Page Numbers I=y, 0=	1	I		WQBL Frac	tion	1		Cadmium		14.67391	0.608203	
Input Page # 1=y, 0=n					1	<u>.</u>		Chromium	111	305.9396	99,24365	
l	L			Conversions				Chromium	VI	15.712	10,582	
Fischer/Site Specific in	puts:			ug/L->lbs/d	ay Qef	0.031692		Copper		9.408853	6.677465	
Pipe=1,Canal≈2,Specif	ic=3			ug/L>lbs/d	ny Qeó		,	Lead		29,46769	1.148313	
Pipe width, feet				ug/L>lbs/d	ay Qr	0,001476		Mercury		1,734	0.012	
ZID plume dist., feet	I			lbs/day>ug	/L Qeo	31.5537		Nickel		774.0821	85.96803	
MZ plume dist., feet				lbs/day>ug	/L Qcf	31.5537		Zinc		62.53296	57.10207	
HHnc plume dist., feet	 			diss->tot l=	у0=п !	1						77
HHc plume dist., feet				Cu diss->tot	l=y0=n	l i		Site Specifi	c Multiplier	Values:		
<u></u>				cfs>MGD	- 1	0.6463		cv -				
Fischer/site specific dilu	itions:				1	<u> </u>		N =				
Dilution ≈	<u> </u>]	Receiving St	ream:			WL.Aa -> 1	LTAs			
/specific MZ Dilution				Default Hard	ness=	25		WLAc> I				
/specific HHnc Dilutio	n=			Default TSS:	•	10		LTA ac>				-
F/specific HHc Dilution	=			99 Crit., 1=y	, 0≕n .	1			WQBL max			
	l								WQBL max			
					T T							

Appendix B-1							ţ							
Color Colo	Γ	 	1	1 -	Π-	.	 	Τ	Γ	T	1		-	-
Color Colo		 	 -	- -	<u> </u>		 		 	 	 		ļ <u></u>	
Color Colo	<u> </u>		 	-	 		Annendiy I	9.1	 		 	-	 	
C(1) C(2) C(3) C(5) C(5) C(7) C(7) C(7) C(1) C(11)		-							South Fort	!	 	 -	Page	<u> </u>
C13	_			 					Soudi Fort	FUIA			 	
Table Co. Effloort Effluent MQL Effluent 95h % Numerical Circins HH]	T -				LATOUSIEE	1 , 751 0227	 	 	 	 -	<u> </u>	<u> </u>
Table Co. Effloort Effluent MQL Effluent 95h % Numerical Circins HH	(*1)			(*2)	(*3)	(*4)	7(*5)	(16)	(47)	(199)	480	(2.2)	-	
Parameters									 			(*10)		
Conc (Avg) (Max) 0=95 % Non-Teb FW FW Indicator	Parameters	_	1	T			indr					LUBIRU		
NONCONVENTIONAL No.		<u> </u>				_	-			1		HHNDW		
NONCONVENTIONAL								0 75 76					· — · —	
3-Chlorophenol	NONCON	VENTION	AI,	-	-6-	-3-			up'L	ng/L	nRir	ng/r	- "Ç"	
3-Chienophenol	Total Pheno	ols (4AAP)		_			5			700	250			
A-Chlorophenol 10 383 197	3-Chlorophe	enol								700	330	30	 	
2.3-Dicklorophenol 10 10 10 10 10 10 10 1	4-Chlorophe	enol					 -			292	102			
2.5-Dicklorophenol										363	192	_	 	
2.6-Dickhorophenol 10 10 3.4-Dickhorophenol 10 10 3.4-Dickhorophenol 10 3.4-Dickhorophenocy 3.4-Dickhorophen			Γ		-						 			
3.4-Dichlorophenot									_	 -				
2.4-Dichlorophenocy- actio actid (2.4-D)								· · · · ·		-	-		 	
Sectic acid (2,4-D)			··-				!							
2-(2.4.5-Trichlorophen-			1 -	†					-					
Oxy propionic acid				<u> </u>		·								.
C24,5-TP, Silvex						-	1				 -		_	
METALS AND CYANIDE			_			·	 -							
Total Arsenic 13	, , , , ,										_			<u> </u>
Total Arsenic 13	METALS A	ND CYAN	IDE				1			-				
Total Cadmium					13		. 10			(83.33=6				
Chromium III							7		27,69					<u>:</u>
Chromium VI			-	_										
Total Copper			1			•			•					
Total Lead	Total Coppe	:7			`									
Total Mercury														
Total Nicket	Total Mercu	тү					-							
Total Zinc 1 20 224,1044 204,6413					···	· —								
Total Cyanide	Total Zinc				T.			 		-				
DIOXIN	Total Cyanid	je										12844		
2,3,7,8 TCDD; dioxin 1.0E-05 7.2E-07 C					_					73.5				·
VOLATILE COMPOUNDS	DIOXIN										—			
VOLATILE COMPOUNDS	2,3,7,8 TCD	D; dioxin			_		1.0E-05	-				7 7 12 17		
VOLATILE COMPOUNDS					· —						- i	7.2E-07		
Bromoform 10 2249 1123 12.5 C	VOLATILE	СОМРО	NDS				-				- +		-	`
Bromoform 10 2930 1465 34.7 C	Benzene		T				10			2249	1175	12.5		
Bromodichloromethane	Bromoform			_										· -
Carbon Tetrachloride	Bromodichlo	romethane								- 2730	1703			
Chloroform	Carbon Tetra	chloride				<u> </u>			 -	2730	1365			
Dibromochloromethane	Chloroform													
1,2-Dichloroethane	Dibromochlo	romethane					$\overline{}$			2000				
1,1-Dichloroethylene	,2-Dichloro	ethane								11800	5900			·
1,3-Dichloropropylene	1,1-Dichloro	ethylene												
10 3200 1600 8100	,3-Dichlorop	propylene	T		•									
Methyl Chloride 50 55000 27500 Methylene Chloride 120 19300 9650 87 C 1,1,2,2-Tetrachloro- <	Ethylbenzene	:												
Methylene Chloride	Methyl Chlor	ide										3100		<u>-</u>
1,1,2,2-Tetrachioro-	Methylene Ch	hloride										97		
thane	,1,2,2-Tetrac	chloro-					i			.,,,,,,	7030	B/		-
732 400 1.8 C	thane						; 10			932	466	1 0	- -	
							1			- 332	400	1.8	_ ` -	

				,								
,				1						1	Ţ -	
·			<u> </u>									1
				Appendix i	B-1					Page	3	
			<u> </u>	US Dept. o	f the Army	South Fort I	Polik					
				LA003222	1 ; AI 8994					ļ	ļ	<u> </u>
				<u> </u>	. <u></u> .		ļ		<u> </u>			
(*1)	(*12)	(*13)		(*15)	(*16)	(*17)	(*18)	(*19)	(*20)	(*21)	(*22)	(*23)
Toxic	WLAa	WLAC	WLAh	 	LTAc	LTAh	Limiting	WQBL	WQBL	WQBL	WQBL	Need
Parameters	Acute	Chronic	HHNDW	Acute	Chronic	HHNDW	А,С,НН	Avg	Max	Avg	Max	WQB
	4		<u> </u>				ļ	001	001	001	001	ļ.,
	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	lbs/day	lbs/day	<u>. </u>
NONCONVENTIONAL		_		<u> </u>								<u> </u>
Total Phenois (4AAP)	.702,1073	360.5364	51.5052	224.6743	191.0843	51.5052	_ 51.5052	51,5052	122.5824	1.632303	3,884881	по
3-Chlorophenol				'								по
4-Chlorophenol	384,153	197.78		122.929	104.8234		104.8234	137.3186	326.0007	4.351902	10.33161	по
2,3-Dichlorophenol				!								no
2,5-Dichlorophenol				!		<u> </u>		<u> </u>				no
2,6-Dichlorophenol				!				<u> </u>				no
3,4-Dichlorophenol	 -			-:					<u> </u>			по
2,4-Dichlorophenocy-			<u> </u>									
acetic acid (2,4-D)	 -		<u> </u>									no
2-(2,4,5-Trichlorophen-												
oxy) propionic acid												<u> </u>
(2,4,5-TP, Silvex)									-			ло
				!						<u></u>		<u></u>
METALS AND CYANIDE								·				
Total Arsenic	655.2944	297.0845		209.6942	157.4548		157.4548	206.2658	489,6843	6.536974	15.51908	no
Total Cadmium	57.6976	2,456044		18.46323	1,301703		1.301703	1.705231	4.048297	0,054042	0,128299	по
Chromium III	1528.27	509.1463		489,0463	269.8475		269.8475	353.5003	839.2259	11.20313	26.59675	no
Chromium VI	15,7593	10.90056		5.042976	5.777297		_5.042976	6,606298	15,68365	0.209367	0.497046	no
Total Copper	27.85232	20,30074		8.912743	10,75939		8.912743	11.67569	27.71863	0.370026	0.878459	ло
Total Lead	163.8453	6,557283		_52,43049	3.47536		3.47536	4.552722	10,80837	0.144285	0.342539	по
Total Mercury	5,333328	0,037906		1.706665	0,02009		0.02009	0.026318	0.06248	0.000834	0.00198	по
Total Nickel	1853.582	211.4158		593,1463	112.0504		112.0504	146.786	348.4766	4,651941	11.04392	no
Total Zinc	224.7791	210.8019		71.92931	111.725		71.92931	94,2274	223,7002	2.986255	7.089505	no
Total Cyanide	46.03818	5.562561	13230.66	14.73222	2,948158	13230.66	2.948158	3.862086	9.16877	0.122397	0.290577	no
niasmi				. !								
DIOXIN				- '								<u></u>
2,3,7,8 TCDD; dioxin	 		7.42E-07			7.42E-07	7.42E-07	7.42E-07	1.77E-06	2,35E-08	5,59E-08	по
VOLATI E COMPOUNDS	 			-								
VOLATILE COMPOUNDS									_			
Benzene	2255.77	1158.867	12,8763	721.8465	614.1995	12,8763	12.8763	12.8763	30.64559	0.408076	0.97122	_no
Bromoform	2938.82	1509,102	35,74461	940,4225	799.8242	35.74461		35,74461	85.07217		2.696107	no
Bromodichloromethane	 		3.399343				3,399343	3.399343	8.090437	0.107732	0.256402	no
Carbon Tetrachloride	2738.218		1.236125	876.2299	745.2287	1.236125	1.236125	1.236125	2.941977	0.039175	0.093237	no
Chloroform	2898.7	1488,5	72,10728	927,584	788.9051	72.10728	72.10728	72,10728	171,6153	2.285224	5.438833	по
Dibromochloromethane	11025 52		5.232928			5.232928	5.232928	5.232928	12.45437	0.165842	0.394704	no
1,2-Dichloroethane	11835.52	6077.613	7.004707	3787.367	3221.135	7.004707	7.004707	7.004707	16.6712	0.221993	0.528344	no
1,1-Dichloroethylene	1163.492	597.4603	0.59746	372.3175	316.654	0.59746	0.59746	0,59746	1.421956	0.018935	0.045065	по
1,3-Dichloropropylene	607.8243	312,1215	167.6906	194,5038	165,4244	167.6906	165,4244	216.706	514.4699	6,867845	16.30458	no
Ethylbenzene Methyl Chloride	3209,633	1648.166	8343.842	1027.083	873.5282	8343.842	873.5282	1144.322	2716.673	36.26585	86,09679	no
Methyl Chloride	55165,57	28327.86		17652,98	15013.77		15013.77	19668.03	46692.81	623.3193	1479,789	no'
Methylene Chloride	19358.1	9940,503	89.61905	6194.592	_5268.467	89,61905	89.61905	89.61905	213,2933	2,840207	6.759692	по
1.1,2,2-Tetrachloro-	024 025	400 ***	100:::::	<u> </u>								
ethane	934.8057	480.0285	1.854187	299,1378	254.4151	1.854187	1.854187	1.854187	4.412965	0.058763	0,139856	по
				<u></u> . <u>.</u>								

						- 1							
::	<u> </u>	<u> </u>				1							
<u>'</u>		ļ <u>.</u>				Appendix I	B-1					Page	4
<u> </u>						US Dept. o	f the Army /	South Fort I	Polk				
							1 ; AJ 8994		_		_		
									l			i	
(*1)		ļ	(*2)	(*3)	(*4)	(*5)	(*6)	(*7)	(*8)	(*9)	(*10)	(*11)	
Toxic			Çu	EMuent	Effluent	MQL	Effluent	95th %	Numeri	cal Criteria		нн	
Parameters	ļ	<u> </u>	Instream	/Tech	/Tech	- [1=No 95%	estimate	Acute	Chronic	HHNDW	Carcinogen	
		<u></u>	Conc.	(Avg)	(Max)	<u> </u>	0=95 %	Non-Tech	FW	FW		Indicator	
	<u> </u>	L	ug/L	ug/L	ug/L	ug/Ĺ		ug/L	ug/L	ug/L	ug/L	*C-	
						l!	<u> </u>						
1	COMPOU	NDS (con	ıt'd)			!							
Tetrachloro	cthylene					10			1290	645	2.5	С	
Toluene	<u></u>		ļ			10			1270	635	46200		- · · -
1,1,1-Trichl	oroethane					10			5280	2640			
1,1,2-Trichl		·				10			1800	900	6.9	С	•
Trichloroeth						l 10			3900	1950	21	С	
Vinyl Chlor	ide					1 10					35,8	C	*-
	<u>.</u>					:							
ACID COM						į							
2-Chlorophe						1 10			258	129	126.4		
2,4-Dichlore	ophenol					<u> </u>			202	101	232.6		
						i							
BASE NEU	TRAL CON	4POUND	S			- 1							
Benzidine						. 50			250	125	0.00017	С	
Hexachlorol	benzene			· _		10					0.00025	С	
Hexachloral	outadiene					: 10			5.1	1.02	0.11	С	
]				[!							
						!							
PESTICIDE	S												
Aldrin						. 0.05			3		0,0004	c	
Hexachloroe					_				,				_
(gamma Bl	IC, Lindane					0.05			5,3	0.21	0.2	С	
Chlordane						0.2			2.4	0.0043	0.00019	С	
4,4'-DDT						0.1			1,1	0.001	0.00019	c	
4,4'-DDE						0.1			52.5	10,5	0.00019	С	
4,4'-DDD						<u>i</u> 0.1			0.03	0.006	0.00027	c	
Dieldrin		[0,1			0.2374	0.0557	0.00005	Ç	
Endosulfan						0.1			0.22	0.056	0,64		
Endrin						0.1			0,0864	0.0375	0,26		
Heptachlor						0.05			0.52	0.0038	0.00007	_c	
												1	
Toxaphene		.		<u>.</u>		. 5		!	0.73	0.0002	0.00024	С	
0.) =						!							
Other Param													
Fecal Col.(co	(נמטטועכ												
Chlorine			·			i			19				
Ammonia				-		! .				4000			
Chlorides	 }					!							
Sulfates	— -					-!							
TDS			 +						:				
	 }	 -			 -								
 - {-	-												
].	-							

		1		ı -	r . !			,		,	,		
 	 					<u> </u>			<u> </u>				
	-				Appendix I			<u> </u>			Page	5	
		-				f the Army /	South Fort I	Olk		ļ. <u>.</u> .		[<u>- </u>	 -
	\vdash			-	LA003222	1 ; A1 8994						ļ	<u> </u>
(*1)		(*12)	(*13)	(*14)	(015)	(*16)	(*17)	(110)	(410)	(420)		4.00	
Toxic		WLA	WLAC	WLAh	(*15) LTÁa	LTA:		(*18)	(*19)	(*20)	(*21)	(*22)	
Parameters	·	Acute	Chronic	HHNDW	Acute	Chronic	LTAh HHNDW	Limiting	WQBL	WQBL	WQBL	WQBL	Nece
Taaneters			Chronic	HUNDA	Acute	Сшопіс	שטאאח	A,C,HH	001	001	001	Max	WQE
	\vdash	ug/L	ug/L	ug/L	ug/L	ug/L	110/1				-	001	
	 		ug L	ug L	ug L	ug/L	ug/L	υ <u>ε</u> /1,	ug/L	ug/L	lbs/day	lbs/day	-
 	_	_			<u>:</u>							ļ	
Tetrachloroethylene		1293.883	664,4171	2.57526	414,0427	352,141	2.57526	2.57526	2.57526	6.129119	0.081615	0.194244	
Toluene	_	1273.823	654,116	47590.8	407.6234	346.6815	47590,8	346,6815	454.1528	1078.179		34.16966	no
1,1,1-Trichloroethane		5295.895	2719,474	_	1694.686	1441.321	47330,0	1441,321	1888.131	4482,51		142,0597	no no
1,1,2-Trichloroethane		1805,419	927.0936	7.107717	577.734	491.3596	7,107717	7.107717	7,107717		0.225258		
Trichloroethylene		3911,741	2008,703	21,63218	1251.757	1064.612	21.63218	21.63218	21.63218	51,4846		0,536114 1,63165	no
Vinyl Chloride			_	36,87772			36.87772	36.87772	36,87772	87,76898	1,168729	2,781574	no
, , , , , , , , , , , , , , , , , , , ,	i			30,31172	-		30,01112	30.81112	30,81772	01,10078	1,106/29	2,1013/4	no
ACID COMPOUNDS			·					-			 		-
2-Chlorophenol	l	258,7767	132.8834	130,2051	82.80854	70.42821	130.2051	70,42821	92.26095	219,0317	2.923934	6,941554	
2,4-Dichlorophenol		202,6081	104.0405	239.6022	64.83459	55.14147	239.6022	55.14147	72.23532	171.49	2.289282	5,43486	no
<u> </u>	_				005.55	33.14147	233.0022	, 33,14147	72.23332	171.47	2.207202	3.43460	по
BASE NEUTRAL CON	APOLIN'	DS.			1			-					
Benzidine		250,7526	128.763	0.000175	80.24083	68,24439	0.000175	0,000175	0.000175	0.000417	5.55E-06	1.32E-05	
Hexachlorobenzene				0.000258		00,21107	0.000258	0.000258	0.000113	0.000417	···		110
Hexachlorabutadiene		5.115353	1.050706	0.113311	1.636913	0.556874	0.113311	0.000238	0.113311		8.16E-06	1.94E-05	no
		3.113333	1.030700	0.113311	1.030913	0.550874	0.113311	0.113311	0.115511	0.269681	0.003591	0.008547	no
					<u> </u>			•	· · · · · · · · · · · · · · · · · · ·				
PESTICIDES				_		~							
Aldrin		3.009031		0.000412	0.96289		0.000412	0,000412	0.000412	0.000981	1,31E-05	3.11E-05	
Hexachlorocyclohexane					0,50205		0,000412	0.000412	0,000412	0.000381	1.316-03	3.11E-03	no
(gamms BHC, Lindane		5.315955	0.216322	0.206021	1,701106	0.114651	0,206021	0.114651	0.150192	0.356563	0.00476	0,0113	no
Chlordane		2.407225	0.004429	0.000196	0.770312	0,002348	0.000196	0.000196	0,000196	0.000466	6.2E-06	1,48E-05	по
4,4'-DDT		1.103311	0.00103	0.000196	0.35306	0.000546	0.000196	0.000196	0.000196	0.000466	6.2E-06	1,48E-05	no
4,4'-DDE		52.65805	10.81609	0.000196	16,85057	5.732529	0.000196	0.000196	0.000196	0.000466	6.2E-06	1,48E-05	по
4,4'-DDD		0,03009	0.006181	0.000278	0.009629	0.003276	0.000278	0.000278	0.000278	0.000662	8.81E-06	2.1E-05	по
Dieldrin		0.238115	0.057377	5.15E-05	0.076197	0,03041	5.15E-05	5.15E-05	5.15E-05	0.000123	1.63E-06	3.88E-06	no
Endosulfan		0.220662	0.057686	0,659267	0.070612	0.030573	0.659267	0.030573	0.040051	0.095084	0.001269	0.003013	no
Endrin		0.08666	0.038629	0,267827	0.027731	0.020473	0.267827	0.020473	0.02682	0.063672	0.00085	0.002018	no
Heptachlor		0.521565	0.003914	7.21E-05	0.166901	0.002075	7.21E-05	7.21E-05	7.21E-05	0.000172	2.29E-06	5,44E-06	no
									-				-
Toxaphene	[0.732198	0.000206	0.000247	0.234303	0.000109	0.000247	0.000109	0.000143	0.00034	4.53E-06	1.08E-05	по
					1								
Other Parameters:										-		-	
Fecal Col.(col/100ml)				1		-		***	_				no
Chlorine		19,0572	11.33114	:	6.098303	6,005506		6.005506	7.867213	18.67712	0.249328	0.591915	пô
Ammonia			4120.416		'	2183,82		2183.82	2860.805	6791.682	90.66462	215,242	no
Chlorides					(••-			no
Sulfates	į				(_							по
TDS .	Ī				!	_			_				no
					:							-	
					1						_		no
					1								no

APPENDIX I

APPENDIX I

Numeric Toxic Limits: LDEQ has reviewed and evaluated the effluent analyses submitted by the permittee on June 4,2008, and examined the following pollutants that are regulated by LAC 33:IX.1113.C.6. in accordance with the implementation procedures outlined under the <u>Permitting Guidance Document for Implementing Louisiana Surface Water Quality Standards, April 16, 2008.</u> Please see Appendix B-1, Water Quality Screen Spreadsheet.

Pollutant	Ce ¹	Ce x 2.13 ²	Water Quality Based Limit ³	Drinking Water Source?	Permit Limit?
Total Arsenic	13 μg/L	27.69 μg/L	206.3 µg/l	No	No

- Metals concentration results were presented as total metals in lab analysis submitted by the permittee. All pollutants calculated in µg/l.
- For the reported effluent concentrations (Ce) it is estimated that 95% of the concentrations of chemicals taken over time will be 2.13 times the Ce or less.
- The water quality based limit is the maximum allowable average instream concentration for that pollutant to be in compliance with water quality standards. Louisiana Water Quality Criteria for metals are hardness dependent, and expressed as dissolved metals. The water quality based limit is calculated with a conversion for metals limits expressed as total metals.

The following steps were used in evaluating the potential toxicity of the analyzed pollutants (see Appendix B-1):

i. An evaluation of the applicability of the effluent data.

Results of the priority pollutant screen were entered and compared to EPA's Minimum Quantification Levels (MQL's) to determine the potential presence of the respective toxic pollutant. Those pollutants with reported laboratory Method Detection Levels (MDL's) which exceed their respective EPA MQL's are determined to be reasonably present in the effluent and an evaluation of their potential toxicity is determined. Those pollutants with MDLs less than the MQL are determined to be not potentially present in the effluent and eliminated from further evaluation.

ii. Calculation of permit limits based on applicable water quality standards.

Applicable water quality criteria are listed in the Appendix B-1 in Columns 8-10. These values were used to calculate the Waste Load Allocations (WLAs) for each of the toxic pollutants. The WLA is the maximum allowable concentration of a pollutant necessary to meet the respective water quality criteria. The WLAs are calculated as described in the State's Permitting Guidance Document for Implementing Louisiana Surface Water Quality Standards, dated April 16, 2008, as follows (Total Arsenic is used as the example pollutant for the following calculations):

Complete Mix Balance Model for Waste Load Allocation

```
Qe
                  plant effluent, MGD = 3.8
Qг
                  critical flow of receiving stream, 0.177 cfs
Fs
                  MZ, ZID flow fraction, LAC 33:IX.1115.D.7
                  and 8 (MZ = 1, and ZID = 0.1)
Cr
                  numerical criteria value from LAC 33:IX.1113, Table 1
                  ambient instream concentration for pollutant. In the absence of accurate supporting
Cu
                  data, assume Cu = 0
                  concentration for pollutant at end-of-pipe based on aquatic life and human health
WLA
                  numerical criteria (site specific dilution type)
LTA
                  long term average, units same as WLA
WOBL =
                  effluent water quality based limit.
Dilution factor
Dilution factor (acute)
                              \overline{(0.177)(0.6463)(0.1) + 3.8}
                          = 0.997
Dilution factor (chronic)
                              (0.177)(0.6463)(1) + 3.82
```

WLA = (Cr/Dilution factor) - (FsQrCu/Qe)

= 0.971

iii. Conversion of dissolved metals criteria for aquatic life to total metals.

Metals criteria for aquatic life protection are based on dissolved metals concentrations and hardness values averaged from data compilations contained in the Louisiana Water Quality Data Summary. A dissolved to total metal conversion will be implemented. Hardness and TSS are a function of the conversion. This involves determining a linear partition coefficient for the metal of concern and using this to determine the fraction of metal dissolved, so that the dissolved metal ambient criteria may be translated to a total effluent limit. The average hardness value used for the analysis is 49 mg/l CaCO3 (USGS data). The 15th percentile TSS value is 11.25 mg/l. The formula for converting dissolved metals to total metals for streams and lakes are provided below.

K_p = Linear partition coefficient
 K_{po} = found in Table A below
 α = found in Table A below
 TSS = total suspended solids concentration found in receiving stream or approximation thereof (nearest most representative site), lowest 15th percentile, units in mg/l
 C_D/C_T = Fraction of metal dissolved
 Cr = Dissolved criteria value for metal in water quality standards

$$K_p$$
 = $K_{po} \times TSS^{\alpha}$
 K_p = $(0.48 \times 10^6) \times 11.25^{(-0.73)}$

then,
$$\frac{C_D}{C_T}$$
 = $\frac{1}{1 + (K_P)(TSS)(10^{-6})}$ = $\frac{C_D}{C_T}$ = $\frac{1}{1 + (82,016.25)(11.25)(10^{-6})}$ = 0.52 therefore, $\frac{C_D}{C_D/C_T}$ TABLE Λ

LINEAR PARTITION COEFFICIENTS FOR PRIORITY METALS IN STREAMS AND LAKES

(Delos et. al, 1984) (*1)

METAL	STRE/	MS: X	LAK	ES De la Caraciana de la Carac
	K _{po} s	v. a.	K _{po}	0
Arsenic	0.48 x 10 ⁶	-0.73	0.48 x 10 ⁶	-0.73
Cadmium	4.00 x 10 ⁶	-1.13	3.52 x 10 ⁶	-0.92
Chromium III (*2)	3.36 x 10 ⁶	-0.93	2.17 x 10 ⁶	-0.27
Copper	1.04 x 10 ⁶	-0.74	2.85 x 10 ⁶	-0.9
Lead	2.80 x 10 ⁶	-0.8	2.04 x 10 ⁶	-0.53
Mercury	2.90 x 10 ⁶	-1.14	1.97 x 10 ⁶	-1.17
Nickel	0.49 x 10 ⁶	-0.57	2.21 x 10 ⁶	-0.76
Zinc	1.25 x 10 ⁶	-0.7	3.34 x 10 ⁶	-0.68

- (*1) Delos, C. G., W. L. Richardson, J. V. DePinto, R. B. Ambrose, P. W. Rogers, K. Rygwelski, J. P. St. John, W. J. Shaughnessey, T. A. Faha, W. N. Christie. Technical Guidance for performing Waste Load Allocations, Book II: Streams and Rivers. Chapter 3: Toxic Substances, for the U. S. Environmental Protection Agency. (EPA-440/4-84-022).
- (*2) Linear partition coefficients shall not apply to the Chromium VI numerical criterion. The approved analytical method for Chromium VI measures only the dissolved form. Therefore, permit limits for Chromium VI shall be expressed in the dissolved form. See 40 CFR 122.45(c)(3).

WLA a,c,h = (Cr/Dilution factor) - (FsQrCu/Qe)

WLA acute =
$$(653.46/0.997) - [(0.1)(0.177)(0)/3.8] = 655.43$$

WLA chronic =
$$(288.46/0.971) - [(1)(0.177)(0)/3.8] = 297.08$$

iv. Calculation of Long Term Averages (LTA's) and Permit Limits.

Comparison of the reported effluent data (converted to the 95th percentile) to the calculated effluent limitations. Long term averages are listed in the Appendix B-1 in Columns 15-17.

Long term averages are calculated for each WLA (based on aquatic and human health criteria). The LTA's are calculated as follows:

A comparison of each LTA is made and the lowest (most restrictive) is selected to calculate the effluent limitations. The most limiting LTA is listed in Appendix B-1, Column 18.

Calculation of permit limits if aquatic life LTA is more limiting:

Daily Average =
$$Min(LTA_a, LTA_c) \times 1.31$$

Daily Maximum = $Min(LTA_a, LTA_c) \times 3.11$

Daily Average =
$$157.45 \times 1.31 = 206.26 \mu g/l$$

Daily Maximum = $157.45 \times 3.11 = 489.67 \mu g/l$

If human health LTA is more limiting:

Daily Average =
$$LTA_h$$

Daily Maximum = $LTA_h \times 2.38$

The resulting allowable effluent concentration is converted to a mass value using the following formula:

lbs/day =
$$(0.20626 \text{ mg/l}) \times 8.34 \times 3.8 \text{ MGD}$$

= 6.54 lbs/day

Comparison of the reported effluent data (converted to 95th percentile) is made to the calculated effluent limitations. Water Quality Based limits are listed in Appendix B-1, Columns 19-22.

In accordance with the State of Louisiana's implementation procedures, the reported effluent concentration is compared to the calculated daily average concentration. If the effluent concentration is greater than the calculated daily average concentration, then a reasonable potential exists and an effluent limitation for the pollutant of concern is imposed in the permit. (Please refer to Appendix B-I for the calculated daily average concentration listed in Column 19 and the effluent concentration listed in Column 3.)

The discharge is considered to pose a reasonable potential to cause a water quality excursion if the estimated 95th percentile of a pollutant in the effluent will result in an instream waste concentration, which is above the applicable State water quality criterion. The 95th percentile of possible effluent concentrations are estimated as follows:

$$C_{95} = C_{\text{mean}}^* \exp(1.645^* \Phi - 0.5^* \Phi^2)$$

where: 1.645 = normal distribution factor at 95th percentile

$$\Phi^2 = \ln(CV^2 + 1)$$
if CV is assumed = 0.6,
$$\Phi^2 = 307$$

The ratio of the estimated 95th percentile value to the mean (C_{95}/C_{mean}) is calculated:

$$C_{95}/C_{mean} = 2.13$$

Based upon review of the permittee's effluent data, there are no pollutants present or potentially present in the effluent discharge in such concentrations that would cause an exceedance of Louisiana's Water Quality Standards. A summary of the evaluation of the permittee's effluent analysis of the toxic pollutants is listed in Appendix B-1.

WQBL CALCULATIONS

WQBL CALCULATIONS US DEPT OF THE ARMY / SOUTH FORT POLK WWTP LA0032221, AI 8994, PER20080002

DESIGN CAPACITY (Q_e): 3.8 MGD

CRITICAL LOW FLOW (7Q10): 0.177 cfs

HARDNESS VALUE: 49 mg/L

FIFTEENTH PERCENTILE VALUE FOR TSS: 11.25 mg/L

PRIORITY POLLUTANT: ARSENIC

DISSOLVED METAL CRITERIA

- $Zn (Acute) = 339.8 \mu g/L$
- Zn (Chronic) = 150 μg/L

DISSOLVED TO TOTAL METAL CONVERSION

$$\frac{C_{D}}{C_{T}} = \frac{1}{1 + (K_{p}) (TSS) (10^{-6})}$$

$$K_{p} = K_{po} X TSS^{\alpha}$$

$$K_{p} = K_{po} X TSS^{\alpha}$$

$$K_{p} = K_{po} X TSS^{\alpha}$$

$$= 82,016.25$$

$$\frac{C_{D}}{C_{T}} = \frac{1}{1 + (82,016.25) (11.25) (10^{-6})}$$

$$= \frac{1}{1.92}$$

$$= 0.52$$

	DISSOLVED	÷	C_D/C_T	=	TOTAL
Acute Criteria	339.8 μg/L	+	0.52	=	653.46 μg/L
Chronic Criteria	150 μg/L	÷	0.52	=	288.46 μg/L

SUMMARY

	DISSOLVED	TOTAL
ACUTE CRITERIA	339.8 μg/L	653.46 μg/L
CHRONIC CRITERIA	150 μg/L	288.46 μg/L

DILUTION CALCULATIONS

DILUTION FACTOR =
$$Q_e$$

• ZID (ACUTE) =
$$\frac{3.8 \text{ MGD}}{(0.177 \text{ cfs})(0.6463 \text{ MGD/cfs})(0.1 \text{ cfs}) + 3.8 \text{ MGD}} = 0.997$$

• MZ (CHRONIC) =
$$\frac{3.8 \text{ MGD}}{(0.177 \text{ cfs})(0.6463 \text{ MGD/cfs})(1 \text{ cfs}) + 3.8 \text{ MGD}} = 0.971$$

CONCLUDE THAT:

99.7% of effluent at edge of ZID 97.1% of effluent at edge of MZ

WASTELOAD ALLOCATION CALCULATIONS

WLA =
$$C_r$$
 - $F_s \times C_r \times C_u$ $C_u = 0$

• WLA_{ZID} (ACUTE) =
$$\frac{653.46 \,\mu\text{g/L}}{0.997}$$
 = 655.43 μ g/L

• WLA_{MZ} (CHRONIC) =
$$\frac{288.46 \,\mu\text{g/L}}{0.971}$$
 = 297.08 μ g/L

LTA CALCULATIONS

- LTA_{ZID} (ACUTE) = WLA_{ZID} X 0.32
 - = $655.43 \mu g/L \times 0.32 = 209.38 \mu g/L$
- LTA_{MZ} (CHRONIC) = WLA_{MZ} X 0.53 = 297.08 μ g/L X 0.53 = 157.45 μ g/L

WQBL CALCULATIONS

LIMITING LTA = 157.45 μg/l

• MONTHLY AVERAGE = LIMITING LTA X 1.31 = 157.45 μg/L X 1.31

206.26 μg/L

0.20626 mg/L X 3.8 MGD X 8.34 lbs/day = 6.54 lbs/day

DAILY MAXIMUM

LIMITING LTA X 3.11

157.45 μg/L X 3.11

489.67 μg/L

0.48967 mg/L X 3.8 MGD X 8.34 lbs/day = 15.52 lbs/day

BIOMONITORING REQUIREMENTS

BIOMONITORING FREQUENCY RECOMMENDATION AND RATIONALE FOR ADDITIONAL REQUIREMENTS

Permit Number:

LA0032221

Facility Name:

South Fort Polk WWTF

Previous Critical Biomonitoring Dilution:

97%

Proposed Critical Biomonitoring Dilution:

97% (WET Limit)

Date of Review:

09/15/08

Name of Reviewer:

Laura Thompson

Recommended Frequency by Species:

Pimephales promelas (Fathead minnow): Once/Ouarter¹

Ceriodaphnia dubia (water flea):

Once/Ouarter1

Recommended Dilution Series:

31%, 41%, 55%, 73%, and 97%

Number of Tests Performed during previous 5 years by Species:

Pimephales promelas (Fathead minnow): 56

Daphnia pulex (water flea):

N/A – Testing of species was not required

Ceriodaphnia dubia (water flea):

50

Number of Failed Tests during previous 5 years by Species:

Pimephales promelas (Fathead minnow): 15 lethal, 18 sub-lethal

Daphnia pulex (water flea):

N/A - Testing of species was not required

Ceriodaphnia dubia (water flea):

7 sub-lethal

Failed Test Dates during previous 5 years by Species:

Pimephales promelas (Fathcad minnow): Testing periods of: 6/1/04-8/31/04 (baygall 3, sublethal); 12/1/04-2/28/05 (baygall 2, sub-lethal); 3/1/05-5/31/05 (baygall 2, lethal & sub-lethal); 3/1/05-5/31/05 (baygall 3, lethal & sub-lethal); 6/1/05-8/31/05 (baygall 4, lethal & sub-lethal); 12/1/05-2/28/06 (baygall 2, lethal & sub-lethal); 12/1/05-2/28/06 (baygall 2, retest, lethal & sublethal); 12/1/05-2/28/06 (baygall 3, lethal & sublethal); 6/1/06-8/31/06 (baygall 4, lethal & sublethal); 9/1/06-11/30/06 (baygall 1, lethal & sublethal); 11/26/06-2/24/07 (baygall 3, lethal & sublethal); 11/26/06-2/24/07 (baygall 4, lethal & sub-

¹ This facility will have a three year compliance schedule to meet toxicity testing requirements implemented into the permit renewal. The biomonitoring frequency shall be quarterly for the life of the permit.

Daphnia pulex (water flea): Ceriodaphnia dubia (water flea): lethal); 12/1/06-2/28/07 (baygall 3, lethal & sub-lethal); 12/1/06-2/28/07 (baygall 4, lethal & sub-lethal); 2/25/07-5/26/07 (baygall 3, lethal & sub-lethal); 3/1/07-5/31/07 (baygall 3, lethal & sub-lethal); 12/1/07-2/28/08 (baygall 1, sub-lethal); 3/1/08-5/31/08 (baygall 1, lethal & sub-lethal) N/A – Testing of species was not required Testing periods of: 6/1/04-8/31/04 (baygall 1, sub-lethal); 6/1/04-8/31/04 (baygall 3, sub-lethal); 9/1/04-11/30/04 (baygall 1, sub-lethal); 6/1/05-8/31/05 (baygall 4, sub-lethal); 12/1/05-2/28/06 (baygall 3, sub-lethal); 11/26/06-2/24/07 (baygall 4, sub-lethal); 12/1/06-2/28/07 (baygall 4, sub-lethal);

Previous TRE Activities:

The US Dept. of the Army/South Fort Polk WWTP experienced a lethal and sublethal toxicity failure to the *Pimephales promelas* during a routine test performed February 7, 2006. A retest performed February 28, 2006 confirmed the toxicity and required the facility to begin a Toxicity Reduction Evaluation (TRE). A TRE Action Plan was received by LDEO on May 26, 2006. The TRE Action Plan was missing the Quality Assurance Plan as required by LA0032221. A revised TRE Action Plan was received on February 14, 2007. which contained all necessary requirements. The final report was received on July 3, 2008. The report states that "the observed toxicity in effluent from the South Fort Polk Wastewater Treatment Plant appears to have a biological cause, most likely one or more species of bacteria or fungi". The final report also states that "using the Isolation Test Design... improves survival and usually results in a passing WET test". South Fort Polk Wastewater Treatment Plant ran an isolation configuration test concurrent with the standard retests in March and April 2006. In a letter dated May 19, 2006, Fort Polk requested approval to apply the isolation configuration procedure included in EPA Test Method 1000.0 for the Pimephales promelas. Because the isolation configuration procedure is consistent with the approved EPA Test Method 1000.0 for biomonitoring of the Pimephales promelas, the alternative method for testing is accepted by LDEO.

Additional Requirements (including WET Limits) Rationale / Comments Concerning Permitting:

The US Dept. of the Army/South Fort Polk WWTP owns and operates an existing publicly owned treatment works serving the southern part of the Joint Readiness Training Center and Fort Polk in Fort Polk, Vernon Parish, Louisiana. LPDES Permit LA0032221, effective December 1, 2003, contained freshwater chronic biomonitoring as an effluent characteristic of Outfall 001 for Ceriodaphnia dubia and Pimephales promelas. The effluent series consisted of 31%, 41%, 55%, 73%, and 97% concentrations, with 97% effluent concentration being defined as the critical biomonitoring dilution. The testing was to be

performed quarterly for the Ceriodaphnia dubia and Pimephales promelas. Toxicity testing data on file shows 7 sub-lethal failures to the Ceriodaphnia dubia and 15 lethal and 18 sub-lethal failures to the Pimephales promelas during the past five years.

A reasonable potential analysis was conducted which demonstrated a finding of reasonable potential for lethal and sub-lethal toxicity based on the last five years of reported biomonitoring testing data. This facility recently completed a TRE in an attempt to find the source(s) of toxicity. LDEQ does not recommend a Whole Effluent Toxicity (WET) Limit be implemented immediately upon permit reissuance. Rather, LDEQ recommends that a three year compliance schedule be incorporated into LA0032221. The purpose of this compliance schedule is to attain compliance with the WET limit. After this three year period expires, the WET limit stated in Part I of LA0032221 shall become effective.

It is recommended that freshwater chronic biomonitoring (with a WET limit compliance schedule) be an effluent characteristic of Outfall 001 (discharge of 3.8 mgd of treated sanitary wastewater) in LA0032221. The effluent dilution series shall be 31%, 41%, 55%, 73%, and 97% concentrations, with the 97% effluent concentration being defined as the critical biomonitoring dilution and/or WET limit. The testing frequency shall be once per quarter for *Ceriodaphnia dubia* and *Pimephales promelas* for the life of the permit.

This recommendation is in accordance with the LDEQ/OES Permitting Guidance Document for Implementing Louisiana Surface Water Quality Standards, Water Quality Management Plan Volume 3. Version 6 (April 16, 2008), and the Best Professional Judgment (BPJ) of the reviewer.

Reasonable Potential Analyzer

Outfall Number 18 001 001

Test Data		!	Enter data ii	n yellow shader	l cells only. Fil	fty percent should	l be entered a	s 50, not 50%.
DMR Period	Lethal NOEC	VERTEBRATE Sublethal NOEC	Lethal TU	Sublethal TU	Lethal NOEC	INVERTEBRAT Subjethal NOEC		Sublethal TU
	97.00		1,03			37.00	1.03	1.03
3/1/04-5/31/04 2			1,03			97.00	1.03	1.03
3/1/04-5/31/04 3			1,03			197,00	1.03	1.03
		37.00	1,03			97.00	1.03	1.03
6/1/04-8/31/04:1			1.03			41.00	1.03	2,44
		(*): 41 : 97.00	1.03	1.03		97.00	1.03	1.03
6/1/04-8/31/04 3			1.03			30.00	1,03	3.33
		(12:317 - 13:97.00	1,03	1.03		5.525-6.97.00	1,03	1.03
9/1/04-11/30/04:1		55 10 Sec. 97,00	1.03	1,03	*******		1.03	3.33
9/1/04-11/30/04			1,03	1,03	####: ##.97.00		1.03	1,03
9/1/04-11/30/04 3			1,03			in in 97.00	1.03	1.03
9/1/04-11/30/04 4			1.03	1.03		##*##### 97.00	1.03	1.03
12/1/04-2/28/05	3 97.00	97.00	1.03	1.03	: "1 t = 97.00	3895 Tali 97.00	1.03	1.03
12/1/04-2/28/05 2	3.12.1.197.00	-33,500-621,-30,00	1.03	3,33	859-11-97.00	11 97.00	1.03	1.03
12/1/04-2/28/05 3	30.45.97.00	97.00 ك لى سرايا	1,03	1.03	# HH, H 97.00	#1011100 97.00	1,03	1.03
		ide site (iii 97.00	1.03			97.00		1.03
	alle jalla hak aj k				uranisti ya ji		<u> </u>	
	*************		1.03	1.03		報酬經過報97.00	1.03	1.03
3/1/05-5/31/05 2	Emilia 30.00	460,1250 to 30,00	3.33	. 3.33	##### 97.00	HHH 4497.00	1.03	1.03
3/1/05-5/31/05 2	111111111111111111111111111111111111111	97.00	1.03	1,03	(material)	Germanner		
3/1/05-5/31/05-2	34000097.00	3555KD1697,00	1.03	1,03	ingeneral (ce			
3/1/05-5/31/05:3	is a in 30.00	30.00	3,33	3.33	##### 97.00	97.00	1,03	1.03
3/1/05-5/31/05-3	humb 97.00	air:444:3.97.00	1.03	1.03	######################################	saile. Park. (St.		
3/1/05:5/31/05:3	hallin 197.00	111111111111111111111111111111111111111	1.03	1,03	m 280 miles	श्रेतिक मामा अस		
3/1/05-5/31/05 4	97.00	55.5633.97.00	1.03			\$3.59F5::97.00		1.03
6/1/05-8/31/05 1			1.03			99996 35h 97.00		1.03
			1,03	1.03		, #197.00		1.03
		4thmbbb11.97,00	1.03			新·洛斯·特斯97.00		1.03
		599275.0ht 30,00	3.33	3.33			1,03	1.37
		1 Maries 97.00	1,03		Latinhtitika.		ļ	
$\overline{}$		97,00	1.03	•	SELMHERY EES			<u> </u>
9/1/05-11/30/05-1		69 66 (197.00	1,03			1		1.03
9/1/05-11/30/05 4			1,03			97.00		1.03
	555555597.00		1.03		•	97.00		1.03
		HEART 28:30,00	3,33			554 7 . 5 97.00	1,03	1.03
		30.00	3.33 3.33		101000 DESTRICT		1.03	
12/1/05-2/28/06 3		2011 1 30.00	1,03		: :::::::::97.00	30.00		3,33 1.03
	346 4-647.00		(0,1	1,03);; 944.6%; p.		1.03	1.03
		97.00	1,03	1.03	97.00	· · · · · · · · · · · · · · · · · · ·	1.03	1.03
		5113 PHIL 30.00	3.23	-		5: 115th 11197.00		1.03
		25.46-47-30.00	3.23			7 · · · 97.00		1.03
		12 15 15 15 97.00	1.03					1.03
-		73.00	1,37					1.03
		30.00	3.23					1.03
1/26/06-2/24/07			3.33			43.48 PM 2:30.00		3.33
		8024466630.00	3.23			±,¥-:;97.00		1,03
12/1/06-2/28/07.4			3,33	-		z 11.46 ki (130.00		3.33
irdikilikika:39				1		TARREST THE SERVICE STREET		
		39402444411V31400	3.23	3.23		il-2011-01-07.00		1.03
2/25/07-5/26/07/4						hadiniii. 97.00		
2/25/07-5/26/07.4	EEEEE.197.00	·治趾上14: 97.00	1.03	1.03	:::::::::::::::97.00	Hotel 1: 97.00	1.03	1.03
3/1/07-5/31/07 3	BCR231,00	Jack Statis 31:00	3,23	3.23	開發展4.97.00	97,00		1.03
3/1/07-5/31/07.4	12	福知品出197.00	1.03			15-1611.16197.00		1.03
		当然思想和 27.00				3375 3 3 97.00		
		**************************************	1.03	1,03		PERSON 9:97.00		1.03
9/1/07-11/30/07-3						EEEE.###97.00		1.03
		2545/41:37-31:00				39/39/39/97.00		1.03
		diddingirila 97	1,03	1.03		.1918 a.J.1810 97	1.03	1.03
at Mark Street						tedali: "Pretta."		
		53/HUPERUH:30		<u> </u>	HIRE ARRES			
		1056 - WHITH 97	1.03	1.03		-11611111111111197		1.03
Banan Hafib	kanistis/iliplijis	Securit du Falicia	L	<u></u>	Politica (ASE) (1888)	-jara Ministrija		

Reasonable Potential Analyzer

Outfall Number 11 2001 1 2001

Enter data in yellow shaded cells only. Fifty percent should be entered as 50, not 50%.

est (Jata		,				
		VERTEBRATE				INVERTEBRAT
MR Period	Lethal NOEC	Sublemal NOEC	Lethal TU	Sublethal TU	Lethal NOEC	Subjethal NOEC
		101.1001.015.045.02341			Militia di sistema	

DMR Period	Lethal NOEC	Sublethal NOEC	Lethal TU	Sublethal TU	Lethal NOEC	Sublethal NOEC	Lethal TU	Sublethal TU
क्षेत्र प्रेष्णावृत्ते, स्टान	iautuamat.	andia iphylit			programme by	:::::::::::::::::::::::::::::::::::::::		
	30	30	3.33	3,33	97	30	1.03	3.33
Count	56	56	1		50	50	l	
Mean	78,732	75.857	1		97.000	88.700	1	
Std. Dev.	29,672	30.758	1		0,000	21.530	1	
CV .	0.4	0.4	1		0	0.2	Ì	
		ī	-	-				

RPMF 1.031 Reasonable Potential Acceptance Criteria

3.880 Reasonable Potential exists, Permit requires WET monitoring and WET limit Vertebrate Lethal

Vertebrate Sublethal 3.880 Reasonable Potential exists, Permit requires WET monitoring and WET limit

Invertebrate Lethal #N/A #N/A

Reasonable Potential exists, Permit requires WET monitoring and WET limit Invertebrate Sublethal

PRETREATMENT REQUIREMENTS

PRETREATMENT EVALUATION AND RECOMMENDATION

FACILITY NAME: United States Department of the Army - South Fort Polk WWTP

PHYSICAL LOCATION: Fort Polk

PARISH:

Vernon

PERMIT #:

· LA0032221

DESIGN FLOW:

3.8 MGD

ESTIMATED OR EXPECTED TREATED WASTEWATER FLOW: 2.0 MGD

OTHER POTWs IN SYSTEM: United States Department of the Army - North Fort Polk

WWTP (LA0032239)

STANDARD LANGUAGE RECOMMENDATION AND JUSTIFICATION:

The LPDES application received by LDEQ on June 4, 2008, states the following wastewater source description, "The South WWTP treats domestic sewage from approximately 2,429 single family housing units, 29 barracks (158 persons/barrack), 190 administrative office buildings, 5 dining facilities, 2 schools (1,000 – 1,600 students), 1 hospital (average 40 beds occupied daily), 4 medical/dental clinics, 24 motor pools, 1 military airfield, 2 gasoline dispensing stations, 3 convenience stores, 1 commissary, and 1 Post Exchange. Fort Polk does not operate any facilities which can be considered significant sources of industrial wastewater discharge as defined by NPDES/LPDES regulations... Twenty-two of the 24 motor pools are equipped with vehicle washing facilities. Motor pool wash racks are still used for occasional vehicle washing... In addition, all motor pool wash racks are equipped with oil/water separators, which pretreat wastewater prior to discharge to the sanitary sewer system."

It is recommended that LDEQ Option 1 Pretreatment Language be included in LPDES Permit LA0032221. This recommendation is in accordance with the Best Professional Judgement (BPJ) of the reviewer.